BRT Lane Transitions
It is not necessary or feasible to construct a dedicated bus lane in some segments of the Geary corridor, as there are sections where either a side-lane BRT or a center-lane BRT is preferred or desirable. The locations where the buses move from side-running transit to center-lane BRT (or vice versa) are called transitions. At these transition points, buses would be required to change lanes, generally aided by a special traffic signal phase (i.e., “queue jump”) and transit signal priority.

BRT in Other Cities
BRT systems in other U.S. cities, such as Los Angeles, Seattle, Cleveland, and Eugene, Oregon, have been shown to improve transit service and attract new riders. BRT is a key component of San Francisco’s strategy to reverse the trend of increasing auto traffic due in part to dissatisfied transit riders switching to driving. Geary is one of several corridors in the San Francisco Bay Area being considered for BRT improvements, as well as Van Ness Avenue in San Francisco and International Boulevard in Alameda County.

Features of Geary BRT

1. DEDICATED TRANSIT LANE
Separated from regular traffic, BRT vehicles would save time that would otherwise be spent merging or stuck in congestion. Bus-only lanes would save private vehicles from the inconveniences caused by their frequent stops.

2. TRANSIT SIGNAL PRIORITY
Traffic signals would recognize an approaching BRT vehicle and extend the green light when it is safe to do so.

3. TRANSIT SIGNAL OPTIMIZATION
A data-driven approach to timing all traffic lights in the corridor would improve flow for all vehicles traveling on Geary.

4. ALL-DOOR BOARDING & LOW-FLOOR VEHICLES
Allowing riders to board through multiple doors on bus vehicles with low floors would speed up boarding and alighting, which would result in reduced travel times.

5. PEDESTRIAN SAFETY ENHANCEMENTS
Reduced crossing distances on streets where BRT stations are located and large platforms for waiting passengers would help keep transit riders safe from traffic.

6. HIGH-QUALITY STATIONS
Transit riders’ waiting experience would be improved with high-quality and well-lit bus stations to improve safety and comfort.

How to Stay Involved
- Attend Geary BRT CAC meetings. See www.gearybrt.org/meetings for the schedule.
- Email us at gearybrt@sfcta.org.
- Visit www.gearybrt.org.
- Call 415.522.4800 to arrange a presentation to your organization or get more details on the project or meeting schedule.

Project Timeline

<table>
<thead>
<tr>
<th>Environmental Analysis</th>
<th>Construction and Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>2014</td>
</tr>
<tr>
<td></td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>2016</td>
</tr>
<tr>
<td>2017</td>
<td>2018</td>
</tr>
<tr>
<td></td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>2020</td>
</tr>
</tbody>
</table>

Schedule subject to change depending on funding and alternative selected.

Platform / Station

For planning/illustration purposes only. Not to scale.
Though 38-Geary buses will continue to 48th Avenue, dedicated bus lanes are not required at the western end of the corridor, as there are fewer riders and less traffic congestion and conflicts. As such, BRT vehicles will transition into/out of dedicated bus lanes at some point west of 25th Avenue.

A. 25TH TO 33TH AVENUE

Three conceptual BRT alternatives are being studied and compared to a project baseline, which assumes basic improvements expected to be implemented in the Geary corridor in the near-term.

ALTERNATIVE 1: No Project

This alternative represents the Geary corridor as it exists today (e.g., three lanes of mixed traffic in each direction) and also includes programmed improvements that are expected in the corridor by the year of implementation, whether the Geary BRT project is constructed or not. Analysis of this alternative isolates the incremental benefits of improvements already planned by the City from the potential BRT investment.

ALTERNATIVE 2: Side-lane BRT

Dedicated BRT lanes would be located between the parking lane and two auto lanes. Bus bulbs would be added at BRT stops by extending the sidewalk into the parking lane. Right-turn pockets for vehicles would be included at selected locations to minimize conflicts between buses and turning vehicles.

ALTERNATIVE 3: Center-lane BRT with Dual Medians

Dedicated BRT lanes would be located in the median of the street and would be completely separated from traffic by two side medians, which would serve as bus platforms and landscaped medians. By narrowing the islands at local stops, there would be enough room for BRT buses to pass local buses.

ALTERNATIVE 4: Center-lane BRT with Single Median

Dedicated BRT lanes would be located in the center of the street on both sides of a wide median, which would serve as a bus platform and a landscaped median. Bus and auto movements would be completely separated. Buses would have doors on both their left and right sides, to serve passengers on the center medians. By narrowing the islands at local stops, there would be enough room for BRT buses to pass local buses.

B. MASONIC TUNNEL

The intersection of Geary and Masonic is very complex. In addition to the four-way standard crossings, this area includes a multi-block underpass and service roads for local traffic and right turns. Alternative 2 (see description below) would construct the bus-only lane on the service roads in this area of the corridor. For Alternatives 3 and 4, the tunnel at Masonic would necessitate a special configuration to keep buses running in the center of the road. The configuration would require trade-offs in transit station design, pedestrian accessibility, and/or traffic/ transit operations.

C. FILLMORE UNDERPASS

The intersection of Geary and Fillmore consists of a grade separation and service roads for local traffic and buses. Alternative 2 (see description below) would construct the bus-only lane on the service roads in this part of the corridor. For Alternatives 3 and 4, the grade separation at Fillmore would need to be filled in and decked to keep buses running in the center of the road. The fill may be too substantial (cost, construction time) to include in the initial phase of the project.

D. INNER GEARY

Dedicated bus lanes would run on the right side of Geary (westbound) and O’Farrell (eastbound) Streets. Chronic congestion affecting bus speeds and reliability, particularly between Union Square and Market Street, and on Market Street itself, would require enhanced treatments. Transit priority on the BRT travel route south of Market would also be provided and benefit from inputs with the Better Market Street project.

The BRT buses would run on Geary (westbound) and O’Farrell (eastbound) before reaching Market Street to connect with the new Transbay Transit Center in this segment of the corridor. On the Geary/O’Farrell couplet, BRT and local buses will operate in existing transit-only lanes, with some enhancements.

Building on recent SFMTA improvements and the forthcoming BMS project, the project would implement several measures to improve transit travel time and reliability: designating the bus-only lanes with enhanced markings; refining traffic signal timing changes and transit signal prioritization; and making minor changes to parking and tow-away lanes.